## **Common Ion Effect Acid + Conjugate Base**

For moderately concentrated solutions of a weak acid, HA, and significant added amounts of its conjugate base, A<sup>-</sup>:

$$HA + H_2O \rightleftharpoons H_3O^+ + A^-$$

$$[HA] \approx C_{HA} \qquad [A^-] \approx C_{A^-}$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]} \approx \frac{[H_3O^+]C_{A^-}}{C_{HA}}$$

$$[H_3O^+] \approx K_a \times \left(\frac{C_{HA}}{C_{\Delta^-}}\right)$$

# **Common Ion Effect Base + Conjugate Acid**

For moderately concentrated solutions of a weak base, B, and significant added amounts of its conjugate acid, BH<sup>+</sup>:

$$B + H_2O \rightleftharpoons OH^- + BH^+$$

$$[B] \approx C_B \qquad [BH^+] \approx C_{BH^+}$$

$$K_b = \frac{[OH^-][BH^+]}{[B]} \approx \frac{[OH^-]C_{BH^+}}{C_B}$$

$$[OH^-] \approx K_b \times \left(\frac{C_B}{C_{BH^+}}\right)$$

## **Henderson-Hasselbalch Equations**

pH = p
$$K_a$$
 + log  $\left(\frac{C_{A^-}}{C_{HA}}\right)$ 

pOH = 
$$pK_b + log\left(\frac{C_{BH^+}}{C_B}\right)$$

#### **Volume Is Irrelevant**

For a solution of an acid to which significant amounts of its conjugate base have been added so that *both* have moderate concentrations (>>10<sup>-5</sup> M), the volume of the solution does not affect the pH.

If V is the volume of a solution made by adding significant amounts of both HA and A<sup>-</sup>:

$$C_{\text{HA}} = \text{mol HA/V}$$
  $C_{\text{A}^-} = \text{mol A}^-/\text{V}$ 

Substituting into  $K_a$ :

$$K_{a} \approx \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]\left(\frac{\mathrm{mol}\ \mathrm{A}^{-}}{\mathrm{V}}\right)}{\frac{\mathrm{mol}\ \mathrm{HA}}{\mathrm{V}}} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}](\mathrm{mol}\ \mathrm{A}^{-})}{\mathrm{mol}\ \mathrm{HA}}$$
$$[\mathrm{H}_{3}\mathrm{O}^{+}] \approx K_{a} \times \left(\frac{\mathrm{mol}\ \mathrm{HA}}{\mathrm{mol}\ \mathrm{A}^{-}}\right)$$

" 
$$\pmod{A^-}$$

This is also true for a solution of a base to which significant amounts of its conjugate acid have been added so that *both* have moderate concentrations (>>10<sup>-5</sup> M).

## **Equimolar Solutions of a Conjugate Pair**

If  $C_{\text{HA}} = C_{\text{A}^-}$ , then

$$K_a = \frac{[H_3O^+]C_{A^-}}{C_{HA}} = [H_3O^+]$$

And

$$pH = pK_a$$

Likewise, if  $C_{\rm B} = C_{\rm BH^+}$ , then

$$K_b = \frac{[OH^-]C_{BH^+}}{C_B} = [OH^-]$$

And

$$pOH = pK_b$$

#### **Buffer Solutions**

- A buffer solution is an equilibrium mixture of a weak acid and its conjugate base, or a weak base and its conjugate acid, with both members of the conjugate pair present in moderate concentrations.
- The essential properties of a buffer solution are:
  - 1. pH does not change with moderate dilution.
  - 2. pH does not change significantly with small additions of acid or base.

#### The Ideal Buffer

① Make

$$[HA] = [A^{-}] \text{ or } [B] = [BH^{+}].$$

Then,

$$pH = pK_a$$
 and  $pOH = pK_b$ 

- ✓ Response will be equally good to added  $H_3O^+$  or  $OH^-$ .
- 2 Make concentrations high.
  - ✓ Then, the ratio  $[A^-]/[HA]$  or  $[BH^+]/[B]$  will not change *significantly* with small added amounts of  $H_3O^+$  or  $OH^-$ .

### **Nearly Ideal Buffer**

- ✓ To make a buffer with a desired pH:
- ① Try to choose a conjugate pair whose  $pK_a \approx pH$ .
- ② Adjust the ratio [A<sup>-</sup>]/[HA] or [BH<sup>+</sup>]/[B] to achieve the desired pH.
- 3 The practical limit on the choice of conjugate acid-base pair is

$$pH \approx pK_a \pm 1$$

Otherwise, one member of the pair is present in too small an amount to make an effective buffer.